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Abstract

We establish necessary and sufficient conditions on a Lie algebra g, under which the Gutt
*-product on g* is tangential to a given coadjoint orbit.
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1. Introduction

In the late 1970s, the concept of a star-product on a Poisson manifold was introduced
by Bayen et al. [3]. That is, to define an associative multiplication operation * (depending
on a parameter A € C) of two functions, so that the space of smooth functions with this
x-product as a multiplication operation would be a formal deformation of the commutative
algebra.

The general question of the existence of such a product for symplectic manifolds has
been completely solved by several authors, using various techniques [7,9,13], and even for
some special Poisson manifolds [9,12,14].

A crucial point in the study of the existence of *-products on Poisson manifolds is the fact
that every Poisson manifold splits into a collection of symplectic submanifolds [16], known
as the leaves of the symplectic foliation. One naturally asks whether a *-product can be
constructed on a Poisson manifold by ‘gluing rogether smoothly’ the star-products defined
on the symplectic leaves. Such x-products are called tangential [5], and their existence has
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been proved for regular Poisson manifolds [9,12]. However, for arbitrary Poisson manifolds
it is an open problem.

Therefore, it is natural to start considering a Poisson manifold which is endowed with a
simple Poisson bracket, and this can be the dual of a Lie algebra g (with the Lie Poisson
bracket). These Poisson manifolds are not regular (unless g is abelian).

The existence of a *-product for g* has been shown by Gutt [11]. In fact, in [11], Gutt
constructed a *-product (Gurr *-product) on the symplectic manifold 7*G of any Lie group
G, and the ‘vertical’ part of this x-product is a x-product on g*. Unfortunately it is not in
general tangential.

Recently, Cahen et al. [5] have proved that in the case of a semisimple Lie algebra there
are no differential and tangential (to all the orbits) x-products on g*.

This work aims to establish necessary and sufficient conditions on a Lie algebra g, under
which the Gutt x-product gives rise to a tangential *-product on a given orbit.

2. Definitions and notation

Let G be a real, connected Lie group with Lie algebra g. (Throughout the exposition, g
will always be real and finite-dimensional.) Let g* be the dual space of g. If x € g* and
g € G, the coadjoint representation is defined by

(Adix.Y) = (x.Ad,Y) VY eg,

where Ad, stands for the adjoint representation. Similarly, there is a linear representation
of g in g*, that is, if X € g then X - x is defined by

(adyx.Y) = —{(x,adxY) = —(x,[X, Y]).
Let h be a Lie subalgebra of g. By h' we denote the annihilator of h in g*, i.e. hl =
{x € g2 x(X) = 0,VX € h}. The isotropy subgroup of x € g* in G is given by G, =
{g € G: Adgx = x}, its Lie algebra by g, = {X € g adyx = 0}, and the coadjoint orbit
through x by O,.
Let us recall two propositions which will be useful later on.

Proposition 1. Lergbea Lie algebra, andx € g*. If gy isan ideal of g, then O, C x +g.t
Furthermore, Oy is an open set in x + g,~.

Proof. The proof follows the same pattern as in [6]. Let U; be an open neighborhood of
0 € g such that the exponential map on it is a diffeomorphism, and let U; = exp(U)).
Let X € U}, g € U, be such that exp(X) = g, and let Y € g,. Since,
(Ad.:x’ Y> = (A :xp(X)x’ Y) = (x, Adexp(~X), Y) = (x. c—adX’ Y).
and g, is an ideal, it follows that
(x,e %X y) = (x,7),

so, Adjx —x € gy ie Adix € x + gt
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The rest of the proof follows directly from the fact that G is connected, so, it is generated
by an open neighborhood of the identity, thus, we can apply the previous argument to the
factors (in a neighborhood of the identity) of an arbitrary g € G. O

fdh -6 x M o Mican action and
PG X v — MISan aciion ana

g'GX_>¢g'x9

is an injective immersion.

The dual g* of any Lie algebra g can be endowed with a natural Poisson structure, the
so-called Lie Poisson structure. If f, g € C*(g*), then for every point x € g*, d f(x) and
dg(x) are two linear forms on g*, that we may consider as elements of g. The Poisson
bracket { f, g} is defined by

{f, g}(x) = (x,[df (x), dg(X)]).

In the Poisson manifold g*, the orbits of the coadjoint action are precisely the leaves of the
symplectic foliation induced by the Lie Poisson bracket.

2.1. x-Products

Now, we will recall the definition of a x-product, the Hochschild cohomology, and some
other basic facts concerning *-products.

Let (M, A) be a Poisson manifold. The space N = C°°(M) admits two algebraic struc-
tures, a structure of an associative algebra given by the usual product of the functions and
a structure of a Lie algebra given by the Poisson bracket.

Let N[[A]] be the space of formal power series in a parameter A € C, with coefficients
in N.

Definition 1 [3]. A x-product on (M, A) is a bilinear map N 2 5 NJ[[A]] defined by

(fie) — frg=) NCulf.9),

n=0

where the so-called cochains C, are bilinear maps with values in N and satisfy the following
axioms:

1. Co(f. 8) = fg, Ci(f.8) =1{f. 8}, Vf, g € C°(M),

2. Co(f. 8) =(=D"Cn(g, ). Vf, 8 € C®M), Vn e N,

3. Cu(fLk)=0,VfeC®M), VkeR, Vn=>1,

4. Zr+s=k Cr(Cs(fv g)9 h) = Zr+s=k Cr(f- Cs. (g, h)), k> 0.

The theory of deformations in the sense of [10] relates the deformations of an associative
algebra to the corresponding Hochschild cohomology.
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Definition 2. A p-cochain C is a p-linear map N — N. The coboundary of a p-cochain
is the p 4+ 1-cochain 3C given by

0C(ug, ..., up) =ugCuy..... up) — Cluouy, uz, ... up) + Clug. uruz. ..., up)
+"'+(-1)pC(uo.u1 ..... upAlup)
+ (=P Cluo, ..., up—1)up.

The pth Hochschild cohomology group is denoted by H(ﬁff(N ). The subscript ‘diff’
indicates that all the cochains considered are multidifferential operators which vanish on
the constants.

A cochain C is said to be differential if it is given by differential operators on each
argument.

A =-product is said to be differential if all the C,, are differential cochains.

2.2. Gutt *-product

Let g be a Lie algebra. The symmetric algebra S(g) over g, is naturally identified with the
algebra of real-valued polynomials on the dual g*. Let S¥(g) be the space of homogeneous
polynomials of degree k.

Gutt in [11] has constructed a *-product on S(g), which we may summarize as follows.

Let U (g) be the universal enveloping algebra of g, and let ® denote the product in U (g).
Let o : S(g) — U(g) be the linear bijection defined by symmetrization, i.e.

1
;_!‘ZXES,,Xi‘Y(I) ® T ® Xix(p)‘
where X;, € 8,1 <k < p and S, stands for the symmetric group of order p.
Let us write [u], for the nth component of u € U(g) in the decomposition U(g) =~
DrZoo (55 [8].
Then for P € SP and Q € $7 we define

o(Xip, ..., Xi,) =

PxQ =) 0o (0(P)®c(Dlprg—t) = ) ACu(P. Q). (h
k=0 k=0

Now, using linearity to extend the above expression to all polynomials, we define a
*-product on S(g). Moreover, the Ci in (1) are bi-differential operators on the space of
polynomials, so it defines a differential x-product on S(g). the so-called Gutt x-product.

Definition 3 [2]. A *-product on S(g) will be called global if it is the restriction to S(g) of
a x-product on C*°(g*).

A sufficient condition for a *-product on S(g) to be global is that the Cy are bi-differential.
Thus, the Gutt *-product is a differential *-product on C*°(g*). From this point onwards,
we shall use the summation convention on pairs of upper and lower indices, and for every
smooth function f, 3’ f stands for 9f/dx;.
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Let Cf‘J i, j,k = 1,...,n be the structure constants of a Lie algebra g relative to a
basis {ey, ..., e,}, and let also (x{, ..., x,) be a system of coordinates on g* determined
by the dual basis {e!, ..., ¢"}. In these coordinates the Lie Poisson bracket of two smooth

functions is given by
Ci(f. 8)(x) = Clixd fd g,
and the 2-cochain C; of the Gutt x-product (1) is given by

Ca(f. 8) = i, xj Mo, )0 f3/ g — J(xi, (ki ;@M fa'g + 0" fobg).  (2)

Proposition 3 [11]. Let E be a differentiable 3-cocycle, null on the constants, on C*°(g*).
Then, if E is a 3-coboundary, one can choose a 2-cochain C such that E = aC and

O<p,g<K

where the coefficients Citroovipojivnnjy are€ linear combinations of the coefficients

q

Remark 1. Proposition 3 and the construction of the Gutt *-product in [11] yield that if
an index i does not appear in any of the labels of the coefficients Ex,, .k, 1. . 1pmy....m,
of the 3-cochain E,, defined by (3), then, it will not appear either in any of the coefficients
C,-l‘,.,,,-p, teea of the corresponding 2-cochain C,, of the Gutt *-product.

Let g be a Lie algebra, and let g, be the isotropy algebra of x € g*. Let ey, ..., e,
€n+l---,em be abasis of g such that ey, ..., e, is a basis of g,, and as usual e, ... e,
e"tl .. e™ stand for the dual basis. From this point onwards, we will use greek indices
to enumerate the basis of g,, i.e. | < a < n and latin indices to enumerate the basis of the
complementof g, ing,i.e.n+1 < i < m. A coordinate system (X, ..., Xp. Xnt1, -+ -»Xm)
for g* with respect to the above dual basis will be called a T -coordinate system.

Lemma 1. Let O, be a coadjoint orbit, and assume that gy is an ideal If (x|, . .., Xn, Xny1.
...+ Xm) denotes a Ty-coordinate system for g*, then the non-vanishing coefficients
Ciy...ipjr iy Of the 2-cochains (of the Gutt x-product)

Colfi@) =Y. Cipipijroig 0 f3I1mdig vy e O m> 1,

O<p,g<K
are those whose indices satisfy, n + 1 < iy, ...,ip, j1,..., jg <m.
Proof. Let(xy,..., Xy, Xn41, ..., Xm) be a Ty-coordinate system. Since g, is an ideal, then

g = gy Yy € Oy. Thus, we have
Ci(f. 8)) = {xi, x;}(»)d fdlg Vye O,

wheren+1<i,j<m.
Hence, the lemma is true for k = 1. Now suppose that it is true for C¢, k > 1.



S.A. Lares/Journal of Geometry and Physics 24 (1998) 164-172 169

Using Proposition 1 and the induction hypothesis, it follows that the non-vanishing co-
efficients of the 3-cochain

Evi(fig.h = ) (CHCs(f.8).h) — Cr(f.Cs(g. h)))

r+s=k, r,s>1

— Z Ei].....iu.j],.‘..jh,kl ..... k(ai],.“,iu f&j] ..... jbgakl.....k(-h‘ (3)

O<a.b,c<K
are those whose indices satisfy n + 1 < iy, ..., iz j1,.... Jo. k1,.... ke <m.
Hence, by Proposition 3, we must have that the indices of the coefficients C feedp J1 ey
of the 2-cochain Cy 4 satisfy n + 1 < iy, .. cdpaJlae Jg SmYy € Oy a

3. Tangential x-products

Throughout the rest of this exposition, the 2-cochains considered will be differential. Let
(M, A) be a Poisson manifold, and let O be a symplectic leaf.

Definition 4. Let x € O, a differential operator D on M is tangential to O at x, if there
exist a neighborhood V of x in O and a neighborhood U of V in M, such that when
@1.92 € C(U) with ¢, = @2, then

D(p1)y = D(¢2)y, -

A differential operator D on M is said to be tangential to O if it is tangential at x for all
xe 0.

A bi-differential operator C on M is said to be tangential to O if, for any function
f € C%° (M), the differential operators C(f, -), C(-. f) are tangential to O.

Definition 5. A differential *-product is called tangential to O if all its cochains C,,.n > 1.
are tangential.

Remark 2. Let C be a cochain of a tangential (to a given symplectic leaf Q) *-product.
and let f be a smooth function on M which is constant on an open subset V of O. Then
Definition 4 implies that C(f, g)), = 0 Vg € C*(M).

Remark 3. Let N be a smooth submanifold (embedded) of a finite dimensional Euclidean
space E, and p € N. Then there exist independent smooth functions f, ..., frona
neighborhood W of p in E, such that

NNW={xeW|fix)=0...., filx) =0},

where k& is the codimension of N in E.

In particular, Proposition 2 asserts that every symplectic leaf O is an immersed subman-
ifold. Thus, Yy € O, there exists a neighborhood V of y in O such that V is an embedded
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submanifold of (M, A). Therefore, there exist independent functions fi, ..., fi onaneigh-
borhood W of yin M suchthat VNW = {x € W| fi(x) =0, ..., fa(x) = 0}, where k is
the codimension of V in M.

From this point onwards, by V, we denote an open subset of Oy containing x.

Lemma 2. Let Oy be a coadjoint orbit, and C, the second term of a differential and
tangential (to Ox) x-product. If f is a smooth function such that f|, is constant, then

Ca(fg. By, = Ca(g. fh)y, = fCalg. b)), Vg, heCT(@E).

Proof. Since 3Ca(f. g, h) = fCa(g, h) — Ca(fg. h) + Ca(f, gh) — Ca(f, g)h, it follows
that fCa(g, h)),, — Ca(fg. B)y,, = Ci(g, Ci(h, )y, =0. o

4. Proof of the main theorem

Theorem 1. Let g be a Lie algebra, and let O, be a coadjoint orbit. Then the following
are equivalent:

(a) the Gutt x-product is tangential to Oy;

(b) the 2-cochain C; of the Gutt x-product is tangential to Oy at x;

(c) g« is an ideal.

Proof. (a) = (b). By definition.
(b) = (c). Let f € C*°(g*) be such that f|, isconstant,and g, & € C°(g*). We define

Ry(f. g, h) = Ca(fg, h) — fCa(g, h) — gCa(f, h).

From Lemma 1, it is immediate that R>(f, g, h)|er =0.If (x1,..., X0, Xntls---> Xm)iS 2
T, -coordinate system, then using (2) we obtain

Ry(f, 8. m)(x) = —${xi, {xa, x:}}(x)3* f8*g0'h, x € Ox.
That is, if C5 is tangential to Oy at x, then
{2k, (¥, xi}}(0)3% f3*g8'h =0 Vg, h € C™(g").
In particular, for fixed k and i, we must have
{xk, {xe, xi}}()3% f(x) = 0
and using Remark 2 we conclude that
Xk, {xe, xi}}(x) =0, 1 <a=<n.

That is to say, {x, [er., [ex. €i/]1]) = 0, where k, i are fixed but arbitrary, so, [eq, &;] €
g, |l <a<n, n+1<i<m Hence, g, is an ideal.

From Proposition 1 it is clear that 3" f(x) = 3/¥f(x) =0, n+1 < i, j.k < m, so,
from (2) it follows that C2(f, -)(x) = 0. Hence, C» is tangential to Oy at x.
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(¢) = (a). Since g, is an ideal, then, g, = g, Vy € Oy. Let (x1,..., Xp, Xng1. ... Xpm)
be a T;-coordinate system, and let f € C°°(g*) such that fj, is constant. Then from
Proposition 1 it follows that 8''~% f(y) = 0, ¥ p > 1, n+1 < i, ....i, < m.
Therefore, from Lemma 1 it follows that Vg € C*°(g*) and k > 1, Ci(f, &y, = 0. Hence,
the Gutt *-product is tangential to O, . V O

Corollary 1. Let G be a compact Lie group with Lie algebra g, and let O, be a coadjoint
orbit in g*. Then the Gutt x-product is tangential to Oy if and only if O, is 0-dimensional.

Proof. Since O, is a compact set in g*, then Proposition 1 asserts that g, cannot be an
ideal. O

Corollary 2. Let g be a simple Lie algebra. Then the Guitt *-product is never tangential 10
any non-trivial orbit.

4.1. Examples of tangential x-products

Example 1. Let g be the Lie algebra (book algebra) with basis (ej, e3, e3) such that
[e1,e2] =0, [e). e3] = ey, ez, e3] = 7. It is straightforward to check that for all x € g*,
g, is an ideal. So, the Gutt x-product is tangential to all orbits.

Example 2. Let g be a 2-step nilpotent Lie algebra. It is easy to check that the Gutt
x-product is tangential to all the coadjoint orbits of g*. Furthermore, in [15], Richardson
provides an example, for each positive integer n > 1, of an n-step, (2n + 1)-dimensional
nilpotent Lie algebra N,, for which all coadjoint orbits O, satisfy Theorem 1(c). Thus, all
these Lie algebras admit a tangential *-product on their duals.
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