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Abstract 

We establish necessary and sufficient conditions on a Lie algebra g, under which the Gutt 
*-product on g* is tangential to a given coadjoint orbit. 
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1. Introduction 

In the late 1970s the concept of a star-product on a Poisson manifold was introduced 
by Bayen et al. [3]. That is, to define an associative multiplication operation * (depending 
on a parameter h E C) of two functions, so that the space of smooth functions with this 
*-product as a multiplication operation would be a jiormul deformation of the commutative 
algebra. 

The general question of the existence of such a product for symplectic manifolds has 
been completely solved by several authors, using various techniques [7,9,13], and even for 
some special Poisson manifolds [9,12,14]. 

A crucial point in the study of the existence of *-products on Poisson manifolds is the fact 
that every Poisson manifold splits into a collection of symplectic submanifolds [ 161, known 
as the leaves of the symplectic foliation. One naturally asks whether a *-product can be 
constructed on a Poisson manifold by ‘gluing together smoothly’ the star-products defined 
on the symplectic leaves. Such *-products are called tangential [5], and their existence has 
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been proved for regular Poisson manifolds [9,12]. However, for arbitrary Poisson manifolds 
it is an open problem. 

Therefore, it is natural to start considering a Poisson manifold which is endowed with a 
simple Poisson bracket, and this can be the dual of a Lie algebra g (with the Lie Poisson 
bracket). These Poisson manifolds are not regular (unless g is abelian). 

The existence of a *-product for g* has been shown by Gutt [ 111. In fact, in [ 111, Gutt 
constructed a *-product (Gurr *-product) on the symplectic manifold T*G of any Lie group 
G, and the ‘vertical’ part of this *-product is a *-product on g*. Unfortunately it is not in 
general tangential. 

Recently. Cahen et al. [5] have proved that in the case of a semisimple Lie algebra there 
are no differential and tangential (to all the orbits) *-products on g*. 

This work aims to establish necessary and sufficient conditions on a Lie algebra g, under 
which the Gutt *-product gives rise to a tangential *-product on a given orbit. 

2. Definitions and notation 

Let G be a real, connected Lie group with Lie algebra g. (Throughout the exposition, g 
will always be real and finite-dimensional.) Let g* be the dual space of g. If x E g* and 
g E G, the coadjoint representation is defined by 

(Ad<;x, Y) = (x, AdR-l Y) VY E g, 

where Ad, stands for the adjoint representation. Similarly, there is a linear representation 
of g in g*, that is, if X E g then X . x is defined by 

(adix, Y) = -(x, adxY) = -(x, [X, Y]). 

Let h be a Lie subalgebra of g. By h’ we denote the annihilator of h in g*, i.e. h’ = 
{x E g*: x(X) = 0, VX E h}. The isotropy subgroup of x E g* in G is given by G, = 
{g E G: Adix = x), its Lie algebra by &; = {X E g: adix = O), and the coadjoint orbit 
through x by O.,. 

Let us recall two propositions which will be useful later on. 

Proposition 1. Let g be a Lie algebra, and x E g*. If& is an ideal of g, then O., C x + g, I. 
Furthermore, 0, is an open set in x + &; ‘. 

Pro08 The proof follows the same pattern as in [6]. Let Ui be an open neighborhood of 
0 E g such that the exponential map on it is a diffeomorphism, and let 172 = exp(Ui ). 

Let X E UI, g E U2 be such that exp(X) = g, and let Y E a. Since, 

(Ad& Y) = (Ad&,(,) x, Y) = (x, Ad,,+x), Y) = (x. e-adX, Y), 

and &r is an ideal, it follows that 

(x, e -adX, Y) = (x, Y), 

so, Ad;x - x E g, ‘, i.e. Ad,*x E x f&r’. 
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The rest of the proof follows directly from the fact that G is connected, so, it is generated 
by an open neighborhood of the identity, thus, we can apply the previous argument to the 
factors (in a neighborhood of the identity) of an arbitrary g E G. 0 

Proposition 2 [l]. Let M be a smooth manifold. 
x E M, then & : G/G* + 0, c M, given by 

g.G, + Qg .x, 

is an injective immersion. 

If @:G x M -+ M is an action and 

The dual g* of any Lie algebra g can be endowed with a natural Poisson structure, the 
so-called Lie Poisson structure. If f, g E C”(g*), then for every point x E g*, d f (x) and 
dg(x) are two linear forms on g*, that we may consider as elements of g. The Poisson 
bracket (f, g} is defined by 

If, g)(x) = lx. [df (x), dg(x)l). 

In the Poisson manifold g*, the orbits of the coadjoint action are precisely the leaves of the 
symplectic foliation induced by the Lie Poisson bracket. 

2.1. *-Products 

Now, we will recall the definition of a *-product, the Hochschild cohomology, and some 
other basic facts concerning *-products. 

Let (M, A) be a Poisson manifold. The space N = Cm(M) admits two algebraic struc- 
tures, a structure of an associative algebra given by the usual product of the functions and 
a structure of a Lie algebra given by the Poisson bracket. 

Let N[[h]] be the space of formal power series in a parameter h E @, with coefficients 
in N. 

Definition 1 [3]. A *-product on (M, A) is a bilinear map N2 -+ N[[hll defined by 

(f,g) - f *g = &,,(f,g), 
n=O 

where the so-called cochains C, are bilinear maps with values in N and satisfy the following 
axioms: 

1. Co(f, g) = fg, Cl(f, g) = If, gl, Vft g E C’=(M), 
2. C,(f, g> = (-l)“C,(g, f). Vf,g E C”(M), Vn E N 
3. C,(f,k) = 0, V f E c?(M), Vk E R, Vn 2 1, 

4. Crfsxk C,(C,(f, g), h) = C,.+s=k CrCf. Cs, (g, h)), k ? 0. 

The theory of deformations in the sense of [lo] relates the deformations of an associative 
algebra to the corresponding Hochschild cohomology. 
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Definition 2. A p-cochain C is a p-linear map NJ’ -+ N. The coboundary of a p-cochain 
is the p + I-cochain aC given by 

ac(uo ,..., u,)=t40c(u1 ,..., up)-cboul,u2 ,..., up)+c(uo,ulu2 . . . . . +) 
+... + (-l)pc(uo.u]. . . .up-IUp) 

+ (-1) p+’ C(u0, . . ) Up-l )up. 

The pth Hochschild cohomology group is denoted by Hiff( N). The subscript ‘diff’ 
indicates that all the cochains considered are multidifferential operators which vanish on 
the constants. 

A cochain C is said to be differential if it is given by differential operators on each 
argument. 

A *-product is said to be differential if all the C,l are differential cochains. 

2.2. Gutt *-product 

Let g be a Lie algebra. The symmetric algebra S(g) over g, is naturally identified with the 
algebra of real-valued polynomials on the dual g*. Let Sk (g) be the space of homogeneous 
polynomials of degree k. 

Gutt in [ 111 has constructed a *-product on S(g), which we may summarize as follows. 
Let U(g) be the universal enveloping algebra of g, and let 8 denote the product in U(g). 

Let o : S(g) --+ U(g) be the linear bijection defined by symmetrization. i.e. 

where Xi, E g, 1 ( k 5 p and S, stands for the symmetric group of order p. 
Let us write [u], for the nth component of u E U(g) in the decomposition U(g) 21 

Then for P E SP and Q E Sq we define 

P * Q = &Qko’ 
lx 

([a(P) ‘8 a(Q)lp+q-k) := c hkCk(P, Q,. (1) 
k=O k=O 

Now, using linearity to extend the above expression to all polynomials, we define a 
*-product on S(g). Moreover, the Ck in (1) are bi-differential operators on the space of 
polynomials, so it defines a differential *-product on S(g), the so-called Gutt *-product. 

Definition 3 [2]. A *-product on S(g) will be called global if it is the restriction to S(g) of 
a *-product on Coo (g*). 

A sufficient condition for a *-product on S(g) to be global is that the Ck are bi-differential. 
Thus, the Gutt *-product is a differential *-product on C”(g*). From this point onwards, 
we shall use the summation convention on pairs of upper and lower indices, and for every 
smooth function f, ai f stands for a.f/axi. 
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Let Cb, i, j, k = 1, . . . , n be the structure constants of a Lie algebra g relative to a 
basis (et, . . . , e,), and let also (xl, . . . , x,) be a system of coordinates on g* determined 
by the dual basis {e’, . . . , e”}. In these coordinates the Lie Poisson bracket of two smooth 
functions is given by 

Cl(.f, g)(x) = C;xd’fajg, 

and the 2-cochain C2 of the Gutt *-product (1) is given by 

C2(f, 8) = i{xi, Xj)(Xk,X~]8ikfaj’g - i(Xk, (Xi, Xj}}(i3kjfaig + a’fakjg). (2) 

Proposition 3 [ 111. Let E be a d@erentiable 3-cocycle, null on the constants, on C”(g*). 
Then, if E is a 3-coboundary, one can choose a 2-cochain C such that E = aC and 

where the coeficients Ci, ,,,,. ip,jl ,_,,, jq are linear combinations of the coeficients 

Ek ,,.... k,,l,..... fb.m ,...., mc of E. 

Remark 1. Proposition 3 and the construction of the Gutt *-product in [ 1 l] yield that if 
an index i does not appear in any of the labels of the coefficients Ek, , . . . . k, ,[, . ___, l,,m, . . . . . ,+ 
of the 3-cochain E, defined by (3), then, it will not appear either in any of the coefficients 

Ci, ,..., i,,j, ,..., j, of the corresponding 2-cochain C, of the Gutt *-product. 
Let g be a Lie algebra, and let &; be the isotropy algebra of x E g*. Let el, . . . , e,, 

en+l, . . . , e, beabasisofgsuchthatel,...,e, isabasisofg,andasusuale’, . . ..e”. 
en+l , ..., em stand for the dual basis. From this point onwards, we will use greek indices 
to enumerate the basis of &, i.e. 1 i a! 5 n and latin indices to enumerate the basis of the 
complementofg,ing,i.e.n+l li im.Acoordinatesystem(xl,..., x,,xI1+t ,..., x,) 
for g* with respect to the above dual basis will be called a Tr -coordinate system. 

Lemma 1. Let 0, be a coadjoint orbit, and assume that &; is an ideal. Zf (xl, . . . , x,, , x,+ 1, 
. . . ) x,) denotes a TX-coordinate system for g*, then the non-vanishing coefJicients 

Ci, . . . . . ip.jl . . . . . j, of the 2-cochains (of the Gutt *-product) 

Cn(f, g> = C Ci ,,,.., ip,j ,,___, jq(y)ai”“‘3ipf aj’*“‘3jqg, y E Ox, n > 1, 

O<p,qzK 

are those whose indices satisfy, n + 1 5 il, . . . , i,, jl, . . . , jq 5 m. 

Proof Let (xl,. . . , xn, x,+1,. . . , x,) be a TX-coordinate system. Since g is an ideal, then 
& = g, Vy E 0,. Thus, we have 

Cl(f, g)(y) = Ixi,xjHYWfajg Vy E Ox, 

where n + 1 5 i, j 5 m. 
Hence, the lemma is true for k = 1. Now suppose that it is true for Ck, k 1 1. 
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Using Proposition 1 and the induction hypothesis, it follows that the non-vanishing co- 
efficients of the 3-cochain 

= c E. II . . . . . i,.j~ . . . . . jh,kl ,.... k, 
ai] ,..., i, f $1 ,.... jhgak] ,.... k’.h, (3) 

O<u.b.csK 

are those whose indices satisfy n + 1 I il, . , i,, jr, . . , jb, kl, . . . 1 k, I m. 
Hence, by Proposition 3, we must have that the indices of the coefficients Ci, , ,,,, i,, ,j, ,,,, Jy 

ofthe2-cochainCk+rsatisfyn+liit ,..., i,,jt ,..., j,r:mVyEO.,. 0 

3. Tangential *-products 

Throughout the rest of this exposition, the 2-cochains considered will be differential. Let 
(M, A) be a Poisson manifold, and let 0 be a symplectic leaf. 

Definition 4. Let x E 0, a d&erential operator D on M is tangential to 0 at x, if there 
exist a neighborhood V of x in 0 and a neighborhood U of V in M, such that when 

CPI. vo2 E Cm(U) with (pqv = q21v,then 

D(w)~v = D(v2)lv. 

A differential operator D on M is said to be tangential to 0 if it is tangential at x for all 
.X E 0. 

A bi-differential operator C on M is said to be tangential to 0 if, for any function 
f E Cm(M), the differential operators C(f. .), C(.. f) are tangential to 0. 

Definition 5. A differential *-product is called tangential to 0 if all its cochains C,. n 2 1. 
are tangential. 

Remark 2. Let C be a cochain of a tangential (to a given symplectic leaf 0) *-product. 
and let f be a smooth function on M which is constant on an open subset V of 0. Then 
Definition 4 implies that C(f, g)lv = 0 Vg E C”(M). 

Remark 3. Let N be a smooth submanifold (embedded) of a finite dimensional Euclidean 
space E, and p E N. Then there exist independent smooth functions ,fl, . , ,fk on a 
neighborhood W of p in E, such that 

N f-’ w = (X E w 1 fl(x) = 0.. . . , fk(X) = 0). 

where k is the codimension of N in E. 

In particular, Proposition 2 asserts that every symplectic leaf 0 is an immersed subman- 
ifold. Thus, Vy E 0, there exists a neighborhood V of y in 0 such that V is an embedded 
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submanifold of (M, A). Therefore, there exist independent functions fr , . . . , fk on a neigh- 
borhoodWofyinMsuchthatVnW=(xE W~f~(x)=O,...,fk(x)=O],wherekis 
the codimension of V in M. 

From this point onwards, by V, we denote an open subset of 0, containing x. 

Lemma 2. Let 0, be a coadjoint orbit, and C2 the second term of a dtfherential and 
tangential (to 0,) *-product. If f is a smooth function such that fiv, is constant, then 

Cz(fg. h)lv, = Cz(g, f h)lv, = f Cz(g, h>]v, Vg, h E C”(g*). 

Proof Since aCz(f, g, h) = f C2(g, h) - Cz(fg, h) + Cz(f, gh) - Cz(f, g)h, it follows 

that f Cz(g, h>lv, - Cz(fg, h)lv, = Cl(g, Cl (h, f ))I”, = 0. 0 

4. Proof of the main theorem 

Theorem 1. Let g be a Lie algebra, and let 0, be a coadjoint orbit. Then the following 
are equivalent: 
(a) the Gutt *-product is tangential to 0,; 
(b) the 2-cochain C2 of the Gutt *-product is tangential to 0, at x; 
(c) &r is an ideal. 

Proof (a) =+ (b). By definition. 
(b) + (c). Let f E C”(g*) be such that fi, is constant, and g, h E C”(g*). We define 

&(f, g, h) = Cz(fg, h) - f Cz(g, h) - gCz(f, h). 

From Lemma 1, it is immediate that Rz(f, g, h)lv, = 0. If (xl, . . . , xn, xn+l, . . . , x,1 is a 
TX-coordinate system, then using (2) we obtain 

Rz(f, g, h)(x) = -f{xk, {xu, xt]](x)aUf akgaih, x E 0,. 

That is, if C2 is tangential to 0, at x, then 

{Xkt bcx, ni]}(x)a” f akg3’h = 0 Vg, h E C”(g*). 

In particular, for fixed k and i, we must have 

{XkT (XCY, xiII(x>a”f(x> = 0 

and using Remark 2 we conclude that 

bk> b&r, Xi]}(X) = 0, lia!ln. 

That is to say, (x, [ek, [e,, ei]]) = 0, where k, i are fixed but arbitrary, so, le,, eil E 
&r, lia~n, n+l(ism.Hence,g,isanideal. 

From Proposition 1 it is clear that a’f (x) = ajk f (x) = 0, n + 1 I i, j, k I m, so, 
from (2) it follows that Cz( f, .)(x) = 0. Hence, C2 is tangential to 0, at x. 
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(c)=+(a).Sinceg,isanideal,then,g,=g?,VyEO,.Let(xl,..., X,,,Xnfl ,...,_ r,) 
be a TX-coordinate system, and let f’ E C”(g*) such that fi”,, is constant. Then from 

Proposition 1 it follows that 8i1,~~.~ipf(y) = 0, V p > 1. n + 1 5 il, . . , i, 5 m. 
Therefore, from Lemma 1 it follows that Vg E Co3(g*) and k 2 1. Ck (f, g)lv,. = 0. Hence, 

the Gutt *-product is tangential to 0,. 0 

Corollary 1. Let G be a compact Lie group with Lie algebra g, and let 0, be a coadjoint 
orbit in g*. Then the Gutt *-product is tangential to 0, if and only if 0, is O-dimensional. 

Proof Since 0, is a compact set in g*, then Proposition 1 asserts that g, cannot be an 
ideal. 0 

Corollary 2. Let g be a simple Lie algebra. Then the Gutt *-product is never tangential to 
an_v non-trivial orbit. 

4.1. Examples of tangential *-products 

Example 1. Let g be the Lie algebra (book algebra) with basis (el, ez, e3) such that 
[el, ez] = 0, [el, e3] = el, [ez, e3] = e2. It is straightforward to check that for all x E g*, 
&; is an ideal. So, the Gutt *-product is tangential to all orbits. 

Example 2. Let g be a 2-step nilpotent Lie algebra. It is easy to check that the Gutt 
*-product is tangential to all the coadjoint orbits of g*. Furthermore, in [ 1.51, Richardson 
provides an example, for each positive integer n > 1, of an n-step, (2n + 1 )-dimensional 
nilpotent Lie algebra N,, for which all coadjoint orbits 0, satisfy Theorem l(c). Thus. all 
these Lie algebras admit a tangential *-product on their duals. 
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